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Classification 
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Abstract-Recently, due to the advent of artificial neural net- 
works and learning vector quantizers, there is a resurgent in- 
terest in reexamining the classical techniques of discriminant 
analysis to suit the new classifier structures. One of the partic- 
ular problems of interest is minimum error classification in 
which the misclassification probability is to be minimized based 
on a given set of training samples. In this paper, we propose a 
new formulation for the minimum error classification problem, 
together with a fundamental technique for designing a classifier 
that approaches the objective of minimum classification error 
in a more direct manner than traditional methods. We contrast 
the new method to several traditional classifier designs in typ- 
ical experiments to demonstrate the superiority of the new 
learning formulation. The method can be applied to other clas- 
sifier structures as well. Experimental results pertaining to a 
speech recognition task are also provided to show the effective- 
ness of the new technique. 

I. INTRODUCTION 
ATTERN classification, particularly in the area of P linear discriminant analysis, is a very well-studied 

topic with most of the original developments completed 
in the 1960’s (see [1]-[5]). Recently, due to the advent 
of artificial neural networks (ANN) [6] and learning vec- 
tor quantizers (LVQ) [7], there is a resurgent interest in 
reexamining the classical techniques to suit the new clas- 
sifier structures. In this paper, therefore, we address spe- 
cifically the problem of minimum error classification, 
propose a fundamental technique for designing a classifier 
that achieves minimum classification error, and contrast 
it to popular classifier structures, such as the perceptron 
[8], so that the new classifiers can be better utilized. 

Consider a set of observations C = {xl, x2, x3, * , 
xN } , where each xi is a K-dimensional vector and is known 
to belong to one of M classes Ci, i = 1,  2, * * , M. A 
classifier normally consists of a set of parameters and a 
decision rule. The task of minimum error classifier design 
is to find the classifier parameter set, denoted by A, and 
the accompanying decision rule, based on the given sam- 
ple set C ,  such that the probability of misclassifying any 
x is minimized. Probability of misclassification is often 
empirically approximated by the recognition error rate, 
defined as the number of recognition errors incurred in 
classifying C, normalized by the size of C. When there 
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is a penalty or cost associated with a misclassification, the 
objective is then to minimize the expected cost accord- 
ingly. 

Bayes decision theory [l] is a fundamental statistical 
approach to the classification problem and is often the ba- 
sis of many pattern classification techniques. Suppose we 
have full knowledge of the a posteriori probability 
PA (C; Ix), which is defined by the parameter set A as de- 
noted by the subscript. (Note that this assumption also 
implies that the true a posteriori probability can be para- 
metrized by A). The Bayes decision rule 

C(x) = C; if P A ( C j ( x )  = max PA(Cj (x )  (1) 

where C(*) denotes a classification operation, is known 
to lead to minimum misclassification probability. The rule 
is often written in terms of the a priori and the conditional 
probabilities as 

j 

c(x) = c; ifpA(xICj)PA(Ci) 

Since the exact probability measure is rarely known in 
real situations, the problem of optimal classifier design 
thus becomes that of estimating the a priori and the con- 
ditional probabilities, defined by the parameter set A, us- 
ing the design samples C. This empirical approach has 
been widely followed in the past because the subject of 
distribution estimation is a well-treated topic in statistics. 
The fundamental assumption in this approach is that the 
form of the distributions as functions of the parameter set 
A is known and that given a sufficient design sample set 
there is a good method to estimate correctly the unknown 
parameters A. 

An alternative to the Bayes decision approach is to use 
discriminant functions in lieu of the probabilities. This 
requires a set of discriminant functions, gi(x; A), i = 1, 
2, * * .  , M ,  defined by the parameter set A, instead of 
explicit knowledge of the probability distributions. Un- 
like the Bayes approach, the problem of “optimal” clas- 
sifier design becomes that of finding the right parameter 
set for the discriminant functions to minimize the “sam- 
ple risk” [ l ] ,  which is defined as the average cost in- 
curred in classifying the design sample C. The cost is 
usually defined on a pair of class indices (i, j)  where i and 
j are the correct class index and the identifiedkecognized 
class index, respectively, indicating the penalty in mis- 
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classifying a Ci class observation as a Cj class observa- 
tion. Note that, as mentioned previously, the sample risk 
is not the expected cost (or cost expectation, see (24)) 
because the size of the design sample is usually finite; it 
can be considered an empirical estimate of the expected 
cost, however. While suboptimality may still occur be- 
cause of improper choice of the discriminant functions, as 
in the case of incorrect distribution assumption in the 
Bayes approach, the discriminant function based method 
usually offers implementational simplicity [ 11 and with the 
advent of new classifier structure, it may be possible to 
circumvent the data consistency issue (see Section V). In 
this paper, we shall primarily focus on the design algo- 
rithms. 

The difficulty associated with the discriminant ap- 
proach lies in the derivation of a minimum-cost discrim- 
inant. A proper discriminant needs to be suitable for in- 
corporation in an objective function for optimization. The 
sample risk, of which the number of classification errors 
is one of the simplest cases with a zero-one function as 
the misclassification cost [ 11, is obviously a piecewise 
constant function of the classifier parameter A and thus a 
poor candidate for optimization by a numerical search 
method. Traditionally, the discriminant based classifier 
design is formulated as an optimization problem aiming 
at minimization of some criterion functions that are ana- 
lytically more tractable than the sample risk. Popular 
choices of these criterion functions include the perceptron 
criterion function and sum of squared errors (or minimum 
squared error (MSE)), for example. These criterion func- 
tions, as will be elaborated in Section 11, do not generally 
lead to a minimum error probability classifier, although 
one can vigorously discuss the convergence properties of 
the solution as obtained by numerical search algorithms. 

In this paper, we propose a new way of deriving the 
discriminant such that the result of the optimization pro- 
cedure will be controllably consistent with the minimum 
sample risk objective. The new discriminant makes proper 
use of the Lp norm and is a continuous function of the 
classifier parameters, suitable for gradient-type numerical 
search. We shall also propose a descent search algorithm 
for optimizing the minimum error objective. This com- 
bination of a new discriminant, directly related to the 
minimum error objective, and the descent algorithm would 
then allow us to circumvent the difficulties encountered in 
most of the traditional techniques and address the optimal 
classifier design problem in a straightforward manner. We 
shall further point out that the algorithm can be shown to 
produce asymptotically a solution consistent with the 
minimum error result, one important step beyond the min- 
imum sample risk objective. However, the proof of this 
asymptotic result will be provided in a separate paper [9] 
for clarity of presentation. In addition, we shall discuss 
how the new discriminant can be incorporated in new 
classifier structures, in particular, a multilayer percep- 
tron, for an expanded application prospect. 

The paper is organized as follows. In the next section, 
to provide a necessary analytical background, we sum- 

marize conventional criterion functions, particularly those 
related to linear discriminant, that have been extensively 
studied in the past. We then propose a new discriminant 
and formulate the minimum classification error problem 
in a manner suitable for optimization in Section 111. In 
Section IV, we present a gradient search algorithm for 
solving the optimization problem, generalize the algo- 
rithm so that expected cost minimization, rather than sam- 
ple risk minimization, can be addressed, and further dis- 
cuss optimality as well as consistency issues associated 
with the algorithm. We then suggest in Section V how the 
error back-propagation technique can be revised for mul- 
tilayer perceptron (MLP) training in order to accomplish 
the minimum classification error objective. In Section VI, 
we compare experimentally the new discriminant and the 
cost functions with traditional criterion functions and the 
associated classifier solutions in typical pattern recogni- 
tion tasks. We show in particular the effect of minimum 
classification error criterion in contrast to the usual min- 
imum squared error (MSE) and perceptron criteria. These 
comparisons are helpful in gaining insights on how clas- 
sifiers can be better constructed for minimum classifica- 
tion error performance. In Section VII, we report a speech 
recognition experiment in which perceptrons with nonlin- 
earity are compared with the new discriminative learning 
technique in real applications. We finally conclude the pa- 
per in Section VIII. 

11. DISCRIMINANT FUNCTIONS 

We provide a general analytic background in this sec- 
tion using linear discriminant functions for simplicity. A 
linear discriminant function of a K-dimensional feature 
vector x has the form w *x + wo where * denotes matrix 
transpose. The weight vector and the threshold, w and wo, 
respectively, are defined for each class, resulting in M 
discriminant functions and a parameter set A = { w l ,  wol , 
w2,  wO2, - - , wy,  wOM} which constitute the classifier. 
Each discriminant function can be written as 

(3) 

where A,*, = [w:  , woi] and y * = [x* 11. The classifier 
uses the following decision rule: 

(4) 

Since the discriminant functions are linear, the decision 
boundaries are hyperplanes. The linear discriminant func- 
tion of (3) can be generalized by augmenting the feature 
vector x with higher order nonlinear terms such that gi (x; 
A) becomes a polynomial in terms of the elements of x. 
However, this generalization does not change the basic 
structure of the discriminant function. We shall stay with 
the expression of (3) in the following without loss of gen- 
erality. 

The classifier parameters are to be determined based on 
a given sample set 6: of N observations. The correct class 
labeling/association for each observation in the set is as- 

C(x) = Ci if g i ( x ;  A) = max gj (x;  A). 
j 
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sumed to be known. If there exist a set of weight vectors 
and thresholds such that classification based on the above 
discriminant functions and the decision rule produces no 
error at all, the sample set is called linearly separable. 
Otherwise, it is linearly nonseparable. For the simplest 
two-category case, by recognizing that X*yi < 0 is iden- 
tical to X* ( -y i )  > 0, we are equivalently seeking a vec- 
tor X, normal to the separating plane, such that X*y; > 0 
for all i where y l  = y i  if xi E C 1 ,  and y /  = -yi if xi E C,. 
Linear separability thus means the existence of such a 
separating plane. 

Determination of the classifier parameters is usually 
formulated as a problem of minimizing some analytically 
tractable scalar criterion functions, instead of the sample 
risk, such that the linear inequalities h*y > 0 can be read- 
ily solved by a gradient descent procedure. In the follow- 
ing, we summarize three essential criterion functions and 
discuss properties of the corresponding solutions as ob- 
tained by appropriate descent algorithms. Also, for brev- 
ity, we shall limit our discussion to two-category cases in 
this section. For multicategory considerations, Kesler’s 
construction of the equivalent problem [4], of course, is 
advisable. Details can be found in [ 13. 

A. The Perceptron Criterion Function 
The perceptron criterion function is defined as 

J , ( X )  = c (-X*y) 
YEY 

where the summation is over the set ’y of observations 
that are misclassified by A. The function is proportional 
to the sum of the distances from the misclassified obser- 
vations to the separating plane. Note that the gradient of 
.Ip is not continuous. 

B. Selective Squared Distance Criterion 

ceptron criterion and is defined as 
The squared distance criterion is very similar to the per- 

J,(X) = c (X*y)2 
YEY 

or 
(X*y - b)’ 

J p )  = ; c 
Y G Y ‘  I I  Yll’ 

(7) 

where the summation is also over the set of misclassified 
observations. (For J ;  of (7), ’y ’ is the set of observations 
for which X*y 5 b.) This criterion function leads to a 
descent algorithm known as the relaxation rule [ 1 1 1 .  

C. The Minimum Squared Error Criterion 
Unlike the above two criterion functions which con- 

sider only the misclassified observations, the minimum 
squared error (MSE) criterion takes into account the entire 
design sample and is defined as 

N 

J,(X)  = (X*yi - bi)’ (8) 
r = l  

where the margin bi is an arbitrarily specified vector with 
positive elements (and may be irrelevant to the observa- 
tion index i ) .  Many solution procedures are available for 
this well-studied criterion. In terms of classification, 
however, the solution depends on the choice of the margin 
vector b. 

D. Properties of the Solution 
Without making explicit all the related solution proce- 

dures, we shall attempt to discuss key properties of the 
solution to the optimization problem for the above three 
essential criterion functions. These properties are conver- 
gence, nonseparable behavior, and consistency with the 
minimum error objective. 

It can be shown [ 11 that there exist gradient search pro- 
cedures that converge to the right solution for the percep- 
tron and the selective squared distance criterion functions 
when the design sample set is linearly separable. It is in- 
tuitively clear that the solution procedures for these cri- 
teria aim at correcting the errors, since the summation in 
(5)-(7) is over misclassified observations. If the design 
sample set is linearly separable, a relentless search would 
reach an error-free solution. Note that the error free so- 
lution here is in reference to the design sample only, but 
not to an independent test data set. When the design sam- 
ple set is not linearly separable, no vector can perfectly 
separate the design sample and these procedures can never 
stop, yielding only a sequence of weight parameters, any 
of which may or may not be a useful solution to the clas- 
sification problem. 

Minimization of the squared error criterion is a better 
understood problem and many well-known procedures 
will lead to a solution that minimizes Js, regardless of the 
linear separability of the design sample. The problem with 
the MSE procedures is that minimization of MSE does not 
necessarily lead to minimum classification error. Even if 
the design sample set is linearly separable, there is no 
guarantee that the solution corresponds to a separating 
plane for error-free classification, unless the margin vec- 
tor b is carefully chosen. The celebrated Ho-Kashyap 
procedure [ 121 that includes adjustment rules for the mar- 
gin vector b has been shown to be able to converge to a 
solution corresponding to a separating plane when the de- 
sign sample set is linearly separable. For nonseparable 
cases, the inconsistency between the MSE solution and a 
minimum error classifier remains. 

One interesting insight pertaining to the MSE solution 
is that with a fixed, properly chosen margin vector b, the 
discriminant approaches a minimum mean-squared-error 
approximation to the Bayes discriminant function 

go@) = P(CI(X) - P(C2lX) (9) 

asymptotically as the number of design observations 
grows [ l ] ,  [13]. The quality of the approximation de- 
pends on the form of the generalized linear discriminant 
function which is a polynomial in the elements of the fea- 
ture vector x. While this property has a certain theoretical 
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appeal, the fact remains that the discriminant function of 
a prescribed form that best approximates the Bayes dis- 
criminant of (9) at a finite set of sample points does not 
necessarily minimize the misclassification rate or error 
probability. For multiclass cases where M > 2, as will 
be pointed out shortly, there was a clear difficulty in de- 
fining a reasonable ‘‘Bayes” discriminant that combines 
the a posteriori probabilities into a well-behaved function 
and thus the above approximation interpretation of the 
MSE solution is of little significance. Since our objective 
is to find a classifier that achieves minimum error proba- 
bility, the inadequacy of these traditional methods and 
criterion functions thus becomes clear. 

111. MINIMUM CLASSIFICATION ERROR DISCRIMINANT 

The traditional discriminant formulation above can be 
stated in two steps: definition of the discriminant function 
and incorporation of the discriminant function in a scalar 
criterion suitable for a gradient-type search procedure to 
find a solution, if the procedure does converge. The in- 
adequacy of this traditional formulation lies in the fact 
that the decision rule does not appear in a functional form 
in the overall criterion function for easy optimization and 
that there is an inconsistency between the chosen scalar 
criterion function and the desired minimum error proba- 
bility objective. Here, we propose a new way of deriving 
the objective criterion for a discriminant based approach 
to mend the above shortcomings. 

We use a three-step procedure to derive the objective 
criterion. As with the traditional approaches, the form of 
the discriminant functions g i ( x ;  A) are first prescribed. 
The classifier makes its decision for each input x by 
choosing the largest of the discriminants evaluated on x. 
This decision process needs to be expressed in a func- 
tional form such that further optimization can be easily 
accomplished. We thus in the second step introduce a 
misclassification measure which allows us to embed the 
decision process in the overall minimum classification er- 
ror formulation. 

The simplest form of a misclassification measure ap- 
pears to be the Bayes discriminant defined for the two- 
category classification case: 

d ( x )  = P(C2 1x1 - P(CI 1x1 (10) 

where P(Ci  1 ~ ) ’ s  are the a posteriori probabilities and are 
assumed to be known. Intuitively, this enumerates how 
likely a class 1 observation is misclassified as a class 2 
observation and the optimal decision boundary is accom- 
plished by a solution to the equation d ( x )  = 0. For mul- 
ticategory cases (M > 2) with unknown distributions, it 
is not as straightforward to define a misclassification mea- 
sure as the above two-category Bayes discriminant. One 
proposal by Amari [14] is to define the misclassification 
measure by 

where S k  = { i 1 gi  (x; A) > g k  (x; A)}, the set of “confus- 
ing classes,” and mk is the number of confusing classes 
in sk. This misclassification measure apparently is moti- 
vated by the Bayes discriminant of (10). However, since 
sk is not a fixed set, i.e., it varies with the parameter set 
A and x ,  the misclassification measure of (1 1) is discon- 
tinuous in A and is not differentiable. For gradient algo- 
rithms, this is not very desirable. 

There are many ways to define a misclassification mea- 
sure that is continuous with respect to the classifier pa- 
rameters. One reasonable possibility is as follows: 

1 / 9  

d,(X) = - g k ( X ;  A) + [ ~ 2 gj(x; A)’] (12) M - 1 j , j + k  

where 7 is a positive number. (In most applications, g j ’ s  
are assumed to be positive.) This misclassification mea- 
sure resembles the measure of (11) in that the decision 
rule is being enumerated. The measure of (12), however, 
is continuous and offers a fair amount of flexibility. By 
varying the value of 7, one can take all the potential 
classes into consideration, to a various degree, in the 
search of the classifier parameter A. One extreme case is 
when 7 approaches 00, the misclassification measure be- 
comes 

(13) 
where Ci is the class with the largest discriminant value 
among those classes other than ck, because (M - l ) ’ /=  
z 1 .  Obviously in this case, dk (x) > 0 implies misclas- 
sification and dk(x)  I 0 means correct decision. In this 
way, the decision rule becomes a judgement on a scalar 
value. 

To complete the definition of the objective criterion, 
the above misclassification measure is used in the third 
step where the minimum error objective is formulated. A 
general form of the cost function can be defined as 

dk(x) = -gk(x; A) + gi(x; A) 

which is expressed as a function of the misclassification 
measure. (The formulation of (14) was also introduced by 
Amari [14].) Note that the cost function e, and the mis- 
classification measure dk can be defined individually for 
each class k for generality. For minimum error classifi- 
cation, the following cost functions are merely two of 
several possibilities: 

a)  Exponential [14]: 

where c > 0 and + 0;  
b) Translated sigmoid: 

E > 0. 

Both functions are smoothed zero-one cost functions suit- 
able for gradient algorithms. Clearly, when dk(x)  < 0 
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which implies correct classification, virtually no cost is 
incurred. On the other hand, a positive dk(x)  leads to a 
penalty which becomes essentially a count of classifica- 
tion error if a zero-one cost function or any of the above 
smoothed zero-one functions is used. Finally, for any un- 
known x, the classifier performance is measured by 

M 

e(X; A) = c tk(x; A) 1 (X E ck) (17) 
k =  1 

where 1( ) is an indicator function: 

1, if a is true 
(18) i 0, otherwise 

l (a)  = 

and ck is used to denote both the class and the data set. 
This three-step definition emulates the classification 

operation and approximates the performance evaluation in 
terms of classification errors in a smooth functional form. 
To see how this formulation relates to the minimum clas- 
sification error, let us assume the discriminant function is 
properly chosen to have the correct form as the true a 
posteriori probability p A  (Ci Ix), where the subscript A de- 
notes the fact that the probabilities are defined by the pa- 
rameter set A. The Bayes minimum risk (minimum clas- 
sification error) resulting from the maximum a posteriori 
(MAP) rule can be written as 

M 

& = c 1 ck) 1 (X E Ck)dX. (19) 
k = l  Xn 

The integration in (19) is over part of the entire observa- 
tion space ‘X that causes classification error according to 
the MAP rule, i.e., 

‘ X k  = {x E xlPA(Cklx) f maxPA(CjIx)}. (20) 
1 

The classification error can be rewritten as 
M 

= c j PA(x, ck) l (x  E ck) 
k = l  3c 

1 [ P A  (ck Ix) f max P A  (ci Ix)l dX 
1 

M 

c P A  (x, ck) 1 (x E ck) ek (dk(x)) h- (2 1 )  
k = l  Cc 

The approximation in (21) can be made arbitrarily close 
by varying the values of 11 and { or 5 .  Note that even if 
the discriminant function differs from the true a posteriori 
probability, & of (21) still represents the classification er- 
ror criterion conditioned on the choice of g, suitable for 
minimization via descent algorithms. The advantage of 
the formulation is immediately clear when the solution 
procedure employs gradient-type descent methods. 

IV. DESCENT METHODS 
The cost function of (17) is defined for each input pat- 

tern x i .  This cost function is the basis of the objective that 
we shall optimize with descent methods. Given a set of 

labeled training patterns d: = { x l ,  x2, - * * , XN } , there 
are two ways of defining the performance objective; one 
is the empirical average cost and the other the expected 
cost. Although algorithmic difference between the two is 
minimal, optimization of these two conceptually different 
objectives leads to gradient search solutions with different 
convergence properties. 

A. Empirical Average Cost and Gradient Descent 
Algorithm 

xN } , we can define an empirical average cost as 
Given a set of design observations d: = { x l ,  x2, - - , 

l N  
&(A) = - c !k (X i ;  A)l(x; E ck). (22) 

N i = l  k = l  

This well-defined cost function can be conveniently min- 
imized by a gradient descent algorithm, using the follow- 
ing adaptation rule: 

11, + 1 = 4 - EVLo(A,) (23) 
where At denotes the parameter set at the tth iteration. The 
usual care and considerations associated with the gradient 
descent algorithm, e.g., the choice of e ,  of course apply 
here. Furthermore, the adaptation schedule can be defined 
arbitrarily. One extreme is that the classifier parameters 
are adjusted upon presentation of each training pattern x, 
E C, and the gradient is taken as Vfk (x,; A) as the indicator 
function in (22) dictates. Another extreme is to adjust the 
parameters after the entire training set d: is classified. In 
this case, the gradient in (23) becomes proportional to the 
average gradient according to (22). The latter case is ex- 
pected to produce a much smoother learning curve than 
the former case. Other adaptation “schedules” that op- 
erate sequentially on subsets of the design sample 6: are 
obviously possible. Note that the minimization is only for 
the (approximate) classification cost incurred in classify- 
ing the design sample {xl, x2, - - - , x N ) ,  although we 
can use empirical arguments to infer that & is asymptot- 
ically the expected performance as N -+ 00. This point is 
one of the fundamental differences between the new 
method and the classical distribution estimation approach 
to pattern recognition, in that the asymptotic results are 
with regard to the classification error instead of the dis- 
tribution estimates. 

B. Expected Cost and Probabilistic Descent Algorithm 
The expected cost can be expressed as 

L(A)  = E{e(x ;  A)) = k p ( c k )  j ek(x; A)P(xlck)  dX 

(24) 

where P(ck)  and p (x 1 ck) are the class a priori and con- 
ditional probabilities, respectively. Obviously, the expec- 
tation operator in (24) indicates that the minimization is 
for the true expected error, not just the errors incurred for 
the finite design sample set d: . However, since both the a 
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priori and conditional distributions are unknown, the ex- 
pected cost cannot be directly minimized. Fortunately as 
suggested by the theorem below, we still can seek to min- 
imize L by adaptively adjusting A in response to the in- 
curred cost each time a training pattern x is presented. 
The adjustment of A is again according to 

(25) 
where the “correction” term 6At is a function of the input 
pattern x, its class label Ci , and the current parameter state 
A,, i.e., 611, = SA(x, ck, A,). The magnitude of the cor- 
rection term is small such that the first-order approxima- 
tion 

L(At+i) L(&) + WVL(A)IA=A, (26) 
holds. As will be shown below, this allows us to address 
E [ L ( A ,  + - L(A,)] = E[6L(A,)] directly rather than 
L(Af+ l )  - L(A,) = 6L(Af) .  Note that 

A t + l  = A, + &Af 

E[6L (4)l = E[6A (x, ck, At)] V L  (AI). (27) 
Therefore, the goal is to find an adaptation rule such that 
E[6L(A,)] < 0 and such that A, converges at least to a 
locally optimum solution A*. The probabilistic descent 
algorithm can be summarized in the following theorem 

Probabilistic Descent Theorem: Given x E ck if the 
classifier parameter adjustment 6A(x ,  ck, A) is specified 

(28) 

where U is a positive-definite matrix and E is a smalkpo- 
sitive real number, then 

[141, 1151. 

by 
SA(X,  ck, A) = -fuvek(x; A) 

E[6L(A)]  I 0. (29) 

Furthermore, if an infinite sequence of random observa- 
tions xt are presented for training and the parameter ad- 
justment rule of (28) is utilized with a corresponding step 
size sequence E ,  which satisfies 

W 

i) C E ,  -, 00 (30) 
I =  1 

and 
ca 

ii) C E :  c 00 
t = l  

then the parameter sequence A, according to 

A t + ,  = AI + sA(xf, ck, Ai) (32) 

converges with probability one to a A* which results in a 
local minimum of L ( A ) .  

As can be seen, the difference between the two adap- 
tation rules (23) and (28) is minimal, but the probabilistic 
descent algorithms provides what can be considered the 
basis of adaptive learning in which as more data are pre- 
sented, the classifier is further refined in the sense of re- 
ducing the expected misclassification cost. The empirical 
average cost and the associated gradient descent algo- 

rithm, on the other hand, are important for pragmatic rea- 
sons. For example, when the a posteriori probabilities are 
used in the discriminant function, and thus in the class 
cost function l?,, the expected cost of (24) becomes un- 
wieldy for optimization because the expectation would 
also be a function of the classifier parameters, i.e., p ( x ,  
ck) = p a @ ,  C,) in (24). This particular difficulty is 
avoided in the empirical average cost of (22). 

V. MINIMUM CLASSIFICATION ERROR MULTILAYER 
FEEDFORWARD NETWORKS 

The above minimum classification error formulation can 
be applied to many new classifier structures such as the 
multilayer perceptron (MLP) [8], learning vector quan- 
tizer (LVQ) [7], and distance network [16]. The formu- 
lation has a profound effect on these new classifier struc- 
tures and leads to improved learning rules for a better 
pattern recognition performance. We discuss in this sec- 
tion how the new minimum classification error criterion 
can be incorporated in a multilayer perceptron. The rela- 
tionship among these new classifiers under the common 
criterion of minimum misclassification probability will be 
addressed in a separate paper [ 171. 

A multilayer perceptron is a feedforward network, as 
illustrated in Fig. 1 for a two-layer perceptron (or three- 
layer if the input layer is also counted as one), that has 
been widely considered in pattern recognition applica- 
tions. Let m be the total number of layers, nj the number 
of nodes in the j th layer (n, = M) and zjj the activation 
output of the ith node in the j t h  layer, with x *  = (xl, x2, 
. . .  , x K )  = ( z l o ,  z20, * * * , zKO) = z; being the input. 
The activation output zi, is obtained according to 

zjj = f(W$Zj- 1 + WOij) (33) 

where w: = (wljj, wZ0, . * is the weight vector 
connecting the nj - nodes in the ( j  - 1)th layer to the 
i th node in the j t h  layer and f is the activation function, 
an example of which is the sigmoid function of (16). 
Without loss of generality, we shall neglect the bias term 
and denote yii = w:zj- I such that z j j  = f( y j j ) .  The set 
of weights W = { w0 } and the prescribed activation func- 
tion thus define an MLP classifier. 

To train an MLP classifier, one employs the error back- 
propagation (EBP) algorithm [8] which is a supervised 
learning scheme based on a training vector x and its cor- 
responding target (or teaching) vector t .  The target vector 
t* = ( t l ,  t2, * , t M )  associated with a given training 
vector x E Ci for an M-class classification task typically 
is binary valued with 

, wn,- 

1, j = i  

0, otherwise. 
t j  = [ (34) 

The classifier is so trained as to reduce the difference be- 
tween the output vector z, and the target vector t. The 
sum-squared error function 

M 

E,, = ,X (t; - z;,)* 
r = l  

(35) 
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a given training sample x E Ci , to use 

Fig. 1. A three-layer perceptron. 

E = P;(d;(x)) (40) 
where 4 is defined by (14)-( 16), di (x) is expressed in terms 
of y, as 

di(x)  = -Yim + [ ~ - l  . . . Y/?, ]’” (41) 

and 9 is a large positive number. The usual nonlinearity 
in the final layer is no longer strictly necessary. (In case 
yjm’s need to maintain nonnegativeness, a supplementary 
nonlinearity such as efim can be used.) Without nonlin- 
earity, the chain rule that led to the error back-propaga- 
tion formula of (37)-(39) remain the same, i.e., 

J J  # 1 

aE nm aE 
aw, im = I ayim,,, 

Awku = - p  - = - 

ayi,,rn a z i m - i , m - ~  . . .  
n m -  I . e  

i m - l = I  azim-l, , , - l  ay im-I ,m- l  

a ~ i , + z , j + 2  aYi,, i , j +  I azij c -.-- 
i, I = 1 az,+ + I azij aWkU 

(42) 

where the recursion of Ci(ayi, j+ , /az , )  (&,,/ayij) f o r j  = 
M - 1, M - 2, * is obvious as in (39). The only 
difference is in the first derivative of E with respect to Zkm. 

Specifically, is often chosen as the cost function for optimization. 
The error back-propagation algorithm is a gradient de- 

(43) scent algorithm that adjusts the weights to minimize E,, = 2 ad. 
(or Cb: E,,) according to aykm aykm 

W“+ ’) = W‘” - pVwE,, I w= W w  (36) and 

k = i  
weight values are recordedladjusted. More specifically, 
where superscript T indicates the time instance when the 

the adjustment for w g ,  A w g ,  is 
adi 

- I  + 1/11 

, k # i ,  

phi$,, j - I (37) 
AwQ = - p  - 8 4 ,  = - 

aWkij (44) 
where p is a positive number, 

h, = 2(zU - t i ) f ’ ( y U ) ,  f o r j  = m (38) 

f o r j  = 1, 2, * , m - 1. (39) 

It is important to note that use of a target vector as de- 
fined by (34), or variations thereof, is required for the 
formulation of a sum-squared error function for optimi- 
zation by descent methods. It, however, does not neces- 
sarily lead to minimum classification error; that is, the 
solution W that minimizes E,,, or expectation of E,,, may 
not coincide with the solution that minimizes the misclas- 
sification probability, as argued previously. One way to 
make the error back-propagation algorithm consistent with 
the minimum classification error objective is to use the 
cost of (21) in lieu of E,,. In particular, following the 
above three-step formulation procedure, we propose, for 

according to the definition of di (x) in (4 1). Note that for 
large 9 ,  

- 1  

fork # i. (45) 

Therefore, with a modification in the error criterion, a 
multilayer perceptron can be trained for minimum clas- 
sification error. 

An advantage with the modified multilayer perceptron 
is related to the consistency issue raised in the Introduc- 
tion. In the distribution estimation approach to the clas- 
sification problem, optimality of the solution cannot be 
addressed when the form of the data distribution is un- 
known and, as usually is the case, incorrectly assumed. 
Similarly, in the discriminant based approach, the choice 
of the discriminant function is crucial to the classifier per- 
formance, even though the optimization objective has 
been correctly defined as the minimum misclassification 
probability. It should be understood that our definition of 
minimum misclassification probability has two meanings: 
One that is conditioned on the prescribed choice of the 
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discriminant function, g i ,  and the other that is the abso- 
lute minimum Bayes risk which occurs only when full 
knowledge of the a posteriori probabilities is correctly 
used in classification. These two meanings become iden- 
tical when the approximation in (21) becomes exact, a 
case requiring that the loss function P(dk) approach the 
error counts, 1 (PA(Ck Ix) f maxiPA(Ci Ix)). Since a mul- 
tilayer perceptron has been shown to be able to define an 
arbitrary real function [ 181, with a flexible architecture in 
terms of the number of hidden units, it thus offers the 
potential of automatically converging to the true mini- 
mum Bayes risk, particularly when the training objective 
is correctly chosen. 

VI. CLASSIFICATION EXPERIMENT 
Several classification experiments were conducted to 

study the characteristics of the minimum classification er- 
ror criterion, and the difference in classification perfor- 
mances as compared to traditional criteria as well as clas- 
sifier architectures. We report two sets of experimental 
results here: one involves a set of artificially generated 
data with mixture distributions and the other pertains to 
the Fisher's iris data, well known to the pattern recogni- 
tion community. 

The artificially generated data set consists of two 
classes. The distributions are of Gaussian mixture types 
with two components in each class. Each token is of two 
dimensions. For class 1, 700 tokens with mean (-5. 0.)' 
and covariance matrix 

(A:: E) 

(::: E l )  

(::A ;::) 

(A::::). 

and 300 tokens with mean (0. O.)*  and covariance 

were generated. Similarly, for class 2, we generated 500 
tokens with mean (1 .O 5 .O)' and covariance 

and another 500 tokens with mean (1.0 0.0)' and covari- 
ance 

Fig. 2 shows a scatter plot of the 2000 training tokens 
generated for the two classes. Note that for the two-class 
case, the misclassification measure of (12) reduces to only 
two terms, a situation similar to Amari's formulation. 

These training tokens (2000 in total) were used to train 
three linear classifiers (LC) with three different criterion 
functions: the perceptron criterion of (5 ) ,  the minimum 
squared error criterion of (8) and the minimum classifi- 
cation error of (12), (14), and (16). For brevity, we de- 
note these criterion functions by PE (perceptron error), 
MSE (minimum squared error), and MCE (minimum 
classification error), respectively. We further generated 

Y 

0 

A t 
-4L  I I I I I I l l  I 1  I 

-8 0 4 
X 

Fig. 2.  A scatter plot of 2000 two-dimensional tokens generated by two- 
component mixture distribution sources; class 1 with mean ( - 5  0)', co- 

variance ( o.o ,o), mixture weight 0.7 and mean (0 O)', covariance 
1.0 0.0 

(::: :::1), mixture weight 0 .3;  class 2 with mean (1.0 5.0)', covari- 

0.1 0.0 

ance (o,o mixture weight 0.5 and mean (1.0 O . O ) ' ,  covariance 

(::: y::), mixture weight 0.5 

an independent set of 2000 tokens according to the same 
distributions for testing purposes. The classification re- 
sults in terms of the recognition error (averaged over four 
independent runs) for both the training set and the test set 
are listed in Table I for comparison. We have run similar 
experiments on a number of artificially generated data sets 
with various distributions. The superior performance of 
LC + MCE was consistently observed in the experi- 
ments. The classification performances of LC + PE and 
LC + MSE, while being consistently inferior to that of 
LC + MCE, did not show a conclusive pattern in terms 
of the relative merit between the two. (In the table, the 
results pertaining to the independent test set are slightly 
better than that of the training set. This can be attributed 
to the fact that the training data and the test data are gen- 
erated according to the same, simple distributions, ensur- 
ing data consistency.) 

It is probably more important to examine how the error 
(or loss) function is minimized in relation to the classifi- 
cation error rate in the present, well-controlled case than 
a simple comparison on the final classification perfor- 
mance. We plot in Figs. 3(a)-(c) the learning (error min- 
imization) curves of the four experiment runs for the three 
error criteria respectively. These curves were obtained for 
the training data but the curves for the test data are essen- 
tially the same. In each figure, we show two sets of plots: 
the upper part displays the criterion function as it is being 
minimized in terms of data epochs (an epoch represents a 
completion of processing on the entire training data set) 
and the lower part is the recognition rate evaluated at each 
training epoch. Of particular significance is Fig. 3(c) for 
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TABLE I 
CLASSIFICATION PERFORMANCE COMPARISON FOR 3 LINEAR CLASSIFIER 

DISTRIBUTION DATA 
DESIGN CRITERIA USING 2-CLASS 2-COMPONENT MIXTURE 

Recognition 

(%) 
Error LC + PE LC + MSE LC + MCE 

Training 
set 12.24 15.25 10.00 

Test 
set 11.18 14.91 9.85 

the MCE case. It is clearly seen that the minimized error 
criterion closely approximates the actual classification er- 
ror rate, thus accomplishing the original objective of min- 
imizing the classification error. This phenomenon is not 
observed in either the PE case or the MSE case. For ex- 
ample, in Fig. 3(a), the perceptron error is fluctuating near 
0 while the classification rate is varying around 80%. 

The other set of experiments involves Fisher’s iris data. 
The iris data consists of four measurements made by E. 
Anderson on 150 samples of three species of iris. The 
four measurements are the calyx length, the calyx width, 
the petal length and the petal width. Fifty tokens are 
available for each of the three species. The task is to clas- 
sify these measured tokens into the three individual spe- 
cies. (This three-class problem thus has an increased so- 
phistication in the misclassification measure, compared to 
the above two-class problem.) Fisher used the data in his 
classic paper on discriminant analysis [ 101. Many clus- 
tering experiments were studied in the past using this data 
set. In our current experiment, all the tokens were used 
for training the classifiers and the classification results in 
the following are restricted to the training data. This thus 
allows us to compare different error criteria in a well-de- 
fined classifier setup. (This is a scenario where one is in- 
terested in classi$cation of the given data rather than rec- 
ognition of future data.) 

We investigated two types of classifiers for the classi- 
fication task. One, similar to the above mixture data case, 
is a linear classifier according to (3) with the correspond- 
ing decision rule of (4). The other is a three-layer percep- 
tron according to (33). For the linear classifier case, we 
again investigated the three error criterion functions, PE, 
MSE, and MCE. 

The three-layer perceptron structure requires further 
explanation as it involves nonlinearity. The sum-squared 
error function of (35) with nonlinearity at the output layer 
is the prevalent choice in most of the traditional MLP 
classifiers. The minimum classification error criterion as 
defined in (40) and (41) does not require a nonlinearity at 
the output. These two criteria can thus be directly com- 
pared based on the same feedforward structure. To pro- 
vide additional insights, we also implemented a three-layer 
perceptron using the sum-squared error function but with- 
out the nonlinearity at the output layer. Since the error 
back-propagation algorithm is also to minimize the sum- 

l o o , ,  , I ,  I I , ,  I f  

v) 

8 
W 
0 
2 

(C) 
Fig. 3 .  (a) Learning curves in terms of training epochs: upper curve, rec- 
ognition rate (Z correct) for four experiment runs; lower curve, PE crite- 
rion. (b) Learning curves in terms of training epochs: upper curve, recog- 
nition rate (% correct) for four experiment runs; lower curve, MSE 
criterion. (c) Learning curves in terms of training epochs: upper curve, 
recognition rate (96 correct) for four experiment runs; lower curve, MCE 
criterion. 

squared error, we again use MSE to designate the tradi- 
tional MLP training objective. Therefore, these three 
cases are denoted by 3PNET + MSE (the case without 
nonlinearity), 3PNET + MSE + N (the traditional case 
with nonlinearity) and 3PNET + MCE (the proposed 
minimum classification error modification) respectively. 
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EPOCH 
Fig. 4. Learning curves in terms of the classification error rate as a func- 
tion of training epochs for a linear classifier based on the minimum clas- 
sification error criterion designed for the iris data set. (Four runs.) 

TABLE I1 
CLASSIFICATION PERFORMANCE COMPARISON FOR 3 LINEAR CLASSIFIER 

DESIGN CRITERIA USING FISHER’S IRIS DATA 

LC + PE LC + MSE LC + MCE 

Classification 
error 14 15.1 4 
(%) 

TABLE 111 
CLASSIFICATION PERFORMANCE COMPARISON FOR 3 FEEDFORWARD 
NETWORK CLASSIFIER DESIGN CRITERIA USING FISHER’S IRIS DATA 

3PNET + 3PNET + 3PNET + 
MSE MSE + N MCE 

Classification 
error 19.8 12.3 2.2 
(%) 

To account for the intrinsic characteristics of stochastic 
training, we performed four runs of classification experi- 
ments for each classifier training, using different orders of 
training data presentation. Fig. 4 shows the four learning 
curves in terms of the classification error rate for the LC 
+ MCE case. The learning behavior for the MCE crite- 
rion is seen to be quite steady and effective. The average 
classification error rate is 4 %  (i.e., 96% correct) when 
MCE was used as the criterion. Table I1 lists the average 
error rates of the four runs for the three linear classifier 
cases, PE, MSE, and MCE, respectively for performance 
comparison. Obviously, the MCE criterion led to a per- 
formance far better than the other two criterion functions. 

With three-layer feedforward networks or MLP’s, the 
classification performance in general improves. The only 
exception is the case of 3PNET + MSE without a nonlin- 
earity at the output layer. We list again the average error 
rates of the four experiment runs in Table I11 for the three 
3PNET cases, MSE, MSE + N and MCE, respectively, 
for comparison. The multiple layer structure and the non- 
linearity indeed led to performance improvements over the 
linear classifier case. The three-layer network trained by 
the MCE criterion gave again the best result of 2.2% error 
rate. The performance advantage of MCE is clearly seen. 

VII. SPEECH RECOGNITION EXPERIMENTS 
Another set of experiments were conducted to examine 

the characteristic differences between the traditional min- 
imum sum-squared error and the minimum classification 

error when applied to a layered perceptron structure for 
speech recognition. The experiments involved recogni- 
tion of the highly confusible English i.E-set alphabet, 
namely, b, c, d, e, g ,  p, t, v, and z .  The speech signal 
was recorded from 100 native Americans, including 50 
male and 50 female, through local dial-up telephone lines. 
The sampling rate was 6.67 kHz and the bandwidth of the 
antialiasing filter was from 100 to 3200 Hz for a digital 
implementation of analysis processing. Each talker spoke 
each word twice, producing two sets of data bases. One 
was used as the training set and the other as the test set. 
(Other parameters include: a 300-sample analysis win- 
dow, a 200-sample overlap between adjacent analysis 
windows, an eighth-order linear prediction analysis and a 
24 cepstral coefficient (cepstrum and delta cepstrum) rep- 
resentation [ 191, [20] .) 

To normalize the speaking rate variation inherent in the 
spoken utterances, a conventional speech recognizer with 
dynamic time warping (DTW) was used as the baseline 
classifier. Fig. 5 shows a block diagram of the conven- 
tional DTW recognizer. The unknown input utterance is 
first analyzed and then matched to each of the reference 
templates, resulting in sequences of spectral distortions. 
Let us denote these distortion sequences by DJ = {dJ ( i ) ,  
i =  1 , 2 ,  * . .  , m,} wherej  is the template index and mJ 
is the length of t he j th  template. Each vocabulary word 
may be represented by a multiplicity of reference tem- 
plates although in this paper we report only the simplest 
case where we use one reference template for each word. 
These distortion sequences { D J } ,  j = 1, 2, , M (M 
= 9 in the present case), are thus the input to the classifier 
to be designed. Note that the total dimension of the input 
is MT = C J = l m J .  

Traditionally, the classification decision is made based 
on a simple average distortion 

M 

The recognized word k is the one that satisfies 
Yk = min y j .  

I s j s M  
(47) 

A more general discriminant function of the distortion se- 
quences is thus 

m8 

y j  = ;gl W j j d j ( i )  + WJO. 

As in most linear discriminant cases, the function of (48) 
can be implemented in a particular perceptron structure as 
shown in Fig. 6. An expanded architecture of the scaled 
perceptron of Fig. 6 is of course the original, unscaled, 
fully connected perceptron, taking the entire set of dis- 
tortion sequences { D j }  as the input. The output value be- 
fore nonlinearity operation in this case is 

MT 

(49) 

where ( d ( i ) } ,  with index i = 1 to M T ,  is the concatenated 
distortion sequence of ioj}, j = 1, 2, , M .  
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are of different dimensions and thus the classical vector 
space approach to classifier design may not be directly 
applicable. This particular problem is addressed in [ 151. 

VIII. SUMMARY 
UNKNOWN RECOGNITION 

Fig. 5. A block diagram of the conventional dynamic time warping based 
speech recognition system. 

Y2 

Fig. 6. A scaled, simplified perceptron with pruned connections. 

% 

0 TRADITIONAL DTW 
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60 

Fig. 7.  Performance comparison (W correct) of several training methods 
for speaker-independent recognition of the English E-set vocabulary. 

In this paper, we present a new formulation of the pat- 
tern recognition problem, aiming at achieving a minimum 
error rate classification. The classical discriminant anal- 
ysis methodology is blended with the classification rule 
(traditionally expressed in an operational form) in a new 
functional form and is used as the design objective crite- 
rion to be optimized by numerical search algorithms. The 
new formulation results in a smooth error function which 
approximates the empirical error rate for the design sam- 
ple set arbitrarily closely. We have applied the minimum 
error formulation to several recognition tasks and dem- 
onstrated the advantages of the new method. The mini- 
mum classification error formulation can also be incor- 
porated in new classifier structures such as the multi-layer 
perceptron. We further suggest how the error back-prop- 
agation algorithm can work with the new error criterion 
and achieve the minimum error result. In a speech rec- 
ognition experiment involving the English E-set vocabu- 
lary, it was demonstrated that the new minimum error 
method achieves the best recognition performance. The 
proposed learning method and formulation provides a 
solid analytical ground for the long-standing minimum er- 
ror classifier design problem. 
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The weight functions in these perceptron structures can 
be trained, as explained in the previous sections, by the 
error back-propagation algorithm [8] with the usual sum- 
squared error criterion (37)-(39), or by the generalized 
descent algorithm with a minimum classification error cri- 
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